【专栏】数学之美番外篇:快排为什么那样快(2)

排序的本质可以这样来表述:一组未排序的N个数字,它们一共有N!种重排,其中只有一种排列是满足题意的(譬如从大到小排列)。换句话说,排序问题的可能性一共有N!种。

排序

用前面看问题的视角,排序的本质可以这样来表述:一组未排序的N个数字,它们一共有N!种重排,其中只有一种排列是满足题意的(譬如从大到小排列)。换句话说,排序问题的可能性一共有N!种。任何基于比较的排序的基本操作单元都是“比较a和b”,这就相当于猜数字游戏里面的一个问句,显然这个问句的答案只能是“是”或“否”,一个只有两种输出的问题最多只能将可能性空间切成两半,根据上面的思路,最佳切法就是切成1/2和1/2。也就是说,我们希望在比较了a和b的大小关系之后,如果发现a<b的话剩下的排列可能性就变成N!/2,如果发现a>b也是剩下N!/2种可能性。由于假设每种排列的概率是均等的,所以这也就意味着支持a<b的排列一共有N!/2个,支持a>b的也是N!/2个,换言之,a<b的概率等于a>b的概率。

我们希望每次在比较a和b的时候,a<b和a>b的概率是均等的,这样我们就能保证无论如何都能将可能性缩小为原来的一半了!最优下界。

一个直接的推论是,如果每次都像上面这样的完美比较,那么N个元素的N!种可能排列只需要log_2{N!}就排查完了,而log_2{N!}近似于NlogN。这正是快排的复杂度。

作者:刘未鹏 出版:电子工业出版社 

为什么堆排比快排慢

回顾一下堆排的过程:

1.建立最大堆(堆顶的元素大于其两个儿子,两个儿子又分别大于它们各自下属的两个儿子…以此类推)

2.将堆顶的元素和最后一个元素对调(相当于将堆顶元素(最大值)拿走,然后将堆底的那个元素补上它的空缺),然后让那最后一个元素从顶上往下滑到恰当的位置(重新使堆最大化)。

3.重复第2步。

这里的关键问题就在于第2步,堆底的元素肯定很小,将它拿到堆顶和原本属于最大元素的两个子节点比较,它比它们大的可能性是微乎其微的。实际上它肯定小于其中的一个儿子。而大于另一个儿子的可能性非常小。于是,这一次比较的结果就是概率不均等的,根据前面的分析,概率不均等的比较是不明智的,因为它并不能保证在糟糕情况下也能将问题的可能性削减到原本的1/2。可以想像一种极端情况,如果a肯定小于b,那么比较a和b就会什么信息也得不到——原本剩下多少可能性还是剩下多少可能性。

在堆排里面有大量这种近乎无效的比较,因为被拿到堆顶的那个元素几乎肯定是很小的,而靠近堆顶的元素又几乎肯定是很大的,将一个很小的数和一个很大的数比较,结果几乎肯定是“小于”的,这就意味着问题的可能性只被排除掉了很小一部分。

这就是为什么堆排比较慢(堆排虽然和快排一样复杂度都是O(NlogN)但堆排复杂度的常系数更大)。

MacKay也提供了一个修改版的堆排:每次不是将堆底的元素拿到上面去,而是直接比较堆顶(最大)元素的两个儿子,即选出次大的元素。由于这两个儿子之间的大小关系是很不确定的,两者都很大,说不好哪个更大哪个更小,所以这次比较的两个结果就是概率均等的了。具体参考这里

为什么快排其实也不是那么快

我们考虑快排的过程:随机选择一个元素做“轴元素”,将所有大于轴元素的移到左边,其余移到右边。根据这个过程,快排的第一次比较就是将一个元素和轴元素比较,这个时候显而易见的是,“大于”和“小于”的可能性各占一半。这是一次漂亮的比较。

然而,快排的第二次比较就不那么高明了:我们不妨令轴元素为pivot,第一次比较结果是a1<pivot,那么可以证明第二次比较a2也小于pivot的可能性是2/3!这容易证明:如果a2>pivot的话,那么a1,a2,pivot这三个元素之间的关系就完全确定了——a1<pivot<a2,剩下来的元素排列的可能性我们不妨记为P(不需要具体算出来)。而如果a2<pivot呢?那么a1和a2的关系就仍然是不确定的,也就是说,这个分支里面含有两种情况:a1<a2<pivot,以及a2<a1<pivot。对于其中任一种情况,剩下的元素排列的可能性都是P,于是这个分支里面剩下的排列可能性就是2P。所以当a2<pivot的时候,还剩下2/3的可能性需要排查。

再进一步,如果第二步比较果真发现a2<pivot的话,第三步比较就更不妙了,模仿上面的推理,a3<pivot的概率将会是3/4!

这就是快排也不那么快的原因,因为它也没有做到每次比较都能将剩下的可能性砍掉一半。

基排为什么又那么快呢?

传统的解释是:基排不是基于比较的,所以不具有后者的局限性。话是没错,但其实还可以将它和基于比较的排序做一个类比。

基排的过程也许是源于我们理顺一副牌的过程:如果你有N(N<=13)张牌,乱序,如何理顺呢?我们假象桌上有十三个位置,然后我们将手里的牌一张一张放出去,如果是3,就放在位置3上,如果是J,就放在位置11上,放完了之后从位置1到位置13收集所有的牌(没有牌的位置上不收集任何牌)。

我们可以这样来理解基排高效的本质原因:假设前i张牌都已经放到了它们对应的位置上,第i+1张牌放出去的时候,实际上就相当于“一下子”就确立了它和前i张牌的大小关系,用O(1)的操作就将这张牌正确地插入到了前i张牌中的正确位置上,这个效果就相当于插入排序的第i轮原本需要比较O(i)次的,现在只需要O(1)了。

但是,为什么基排能够达到这个效果呢?上面只是解释了过程,解释了过程不代表解释了本质。

当i张牌放到位之后,放置第i+1张牌的时候有多少种可能性?大约i+1种,因为前i张牌将13个位置分割成了i+1个区间——第i+1张牌可以落在任意一个区间。所以放置第i+1张牌就好比是询问这样一个问题:“这张牌落在哪个区间呢?”而这个问题的答案有i+1种可能性?所以它就将剩下来的可能性均分成了i+1份(换句话说,砍掉了i/i+1的可能性!)。再看看基于比较的排序吧:由于每次比较只有两种结果,所以最多只能将剩下的可能性砍掉一半。

这就是为什么基排要快得多。而所有基于比较的排序都逃脱不了NlogN的宿命。

信息论!信息论?

本来呢,MacKay写那篇文章《Information Theory: Inference and Learning Algorithms》是想用信息论来解释为什么堆排慢,以及为什么快排也慢的。MacKay在他的文章中的解释是,只有提出每种答案的概率都均等的问题,才能获得最大信息量。然 而,仔细一想,其实这里信息论并不是因,而是果。这里不需要用信息论就完全能够解释,而且更明白。信息论只是对这个解释的一个形式化。当然,信息论在其它 地方还是有应用的。但这里其实用不着信息论这么重量级的东西(也许具体计算一些数据的时候是需要的),而是只需要一种看问题的本质视角:将排序问题看成和 猜数字一样,是通过问问题来缩小/排除(narrow down)结果的可能性区间,这样一来,就会发现,“最好的问题”就是那些能够均分所有可能性的问题,因为那样的话不管问题的答案如何,都能排除掉k-1/k(k为问题的答案有多少种输出——猜数字里面是2,称球里面是3)种可能性,而不均衡的问题总会有一个或一些答案分支排除掉的可能性要小于k-1/k。于是策略的下界就被拖累了。

小结

这的确是“小结”,因为两点:

1.这个问题可以有信息论的理论解释,而信息论则是一个相当大的领域了。

2.文中提到的这种看问题的视角除了用于排序、称球,还能够运用到哪些问题上(比如搜索)。

(待续;此文的修订版已收录《暗时间》一书,由电子工业出版社2011年8月出版。作者于2009年7月获得南京大学计算机系硕士学位,现在微软亚洲研究院创新工程中心从事软件研发工程师工作。)

网络编辑:谢小跳

{{ isview_popup.firstLine }}{{ isview_popup.highlight }}

{{ isview_popup.secondLine }}

{{ isview_popup.buttonText }}