【专栏】数学之美番外篇:平凡而又神奇的贝叶斯方法(10)

虽然句子和文章的数目是无限的,然而就拿邮件来说,如果我们只关心邮件中句子的语义,在这个层面上可能性便大大缩减了,我们关心的抽象层面越高,可能性越小。单词集合和句子的对应是多对一的,句子和语义的对应又是多对一的,语义和意图的对应还是多对一的,这是个层级体系。

朴素贝叶斯方法

朴素贝叶斯方法是一个很特别的方法,所以值得介绍一下。我们用朴素贝叶斯在垃圾邮件过滤中的应用来举例说明。

作者:刘未鹏 出版:电子工业出版社

贝叶斯垃圾邮件过滤器

问题是什么?问题是,给定一封邮件,判定它是否属于垃圾邮件。按照先例,我们还是用D来表示这封邮件,注意D由N个单词组成。我们用h+来表示垃圾邮件,h-表示正常邮件。问题可以形式化地描述为求:

P(h+|D) = P(h+) * P(D|h+) / P(D)

P(h-|D) = P(h-) * P(D|h-) / P(D)

其中P(h+)和P(h-)这两个先验概率都是很容易求出来的,只需要计算一个邮件库里面垃圾邮件和正常邮件的比例就行了。然而P(D|h+)却不容易求,因为D里面含有N个单词d1, d2, d3, .. ,所以P(D|h+)= P(d1,d2,..,dn|h+)。我们又一次遇到了数据稀疏性,为什么这么说呢?P(d1,d2,..,dn|h+)就是说在垃圾邮件当中出现跟我们目前这封邮件一模一样的一封邮件的概率是多大!开玩笑,每封邮件都是不同的,世界上有无穷多封邮件。瞧,这就是数据稀疏性,因为可以肯定地说,你收集的训练数据库不管里面含了多少封邮件,也不可能找出一封跟目前这封一模一样的。结果呢?我们又该如何来计算P(d1,d2,..,dn|h+)呢?

我们将P(d1,d2,..,dn|h+)扩展为:P(d1|h+) * P(d2|d1, h+) * P(d3|d2,d1, h+) * ..。熟悉这个式子吗?这里我们会使用一个更激进的假设,我们假设di 与 di-1是完全条件无关的,于是式子就简化为 P(d1|h+) * P(d2|h+) * P(d3|h+) * .. 。这个就是所谓的条件独立假设,也正是朴素贝叶斯方法的朴素之处。而计算P(d1|h+) * P(d2|h+) * P(d3|h+) * ..就太简单了,只要统计di这个单词在垃圾邮件中出现的频率即可。关于贝叶斯垃圾邮件过滤更多的内容可以参考这个条目,注意其中提到的其他资料。

一点注记:这里,为什么有这个数据稀疏问题,还是因为统计学习方法工作在浅层面,世界上的单词就算不再变多也是非常之多的,单词之间组成的句子也是变化多端,更不用说一篇文章了,文章数目则是无穷的,所以在这个层面作统计,肯定要被数据稀疏性困扰。我们要注意,虽然句子和文章的数目是无限的,然而就拿邮件来说,如果我们只关心邮件中句子的语义(进而更高抽象层面的“意图”(语义,意图如何可计算地定义出来是一个人工智能问题),在这个层面上可能性便大大缩减了,我们关心的抽象层面越高,可能性越小。单词集合和句子的对应是多对一的,句子和语义的对应又是多对一的,语义和意图的对应还是多对一的,这是个层级体系。神经科学的发现也表明大脑的皮层大致有一种层级结构,对应着越来越抽象的各个层面,至于如何具体实现一个可放在计算机内的大脑皮层,仍然是一个未解决问题,以上只是一个原则(principle)上的认识,只有当computational的cortex模型被建立起来了之后才可能将其放入电脑。

(待续;此文的修订版已收录《暗时间》一书,由电子工业出版社2011年8月出版。作者于2009年7月获得南京大学计算机系硕士学位,现在微软亚洲研究院创新工程中心从事软件研发工程师工作。)

网络编辑:谢小跳

{{ isview_popup.firstLine }}{{ isview_popup.highlight }}

{{ isview_popup.secondLine }}

{{ isview_popup.buttonText }}